Telegram Group & Telegram Channel
Объясните разницу между AdaBoost и XGBoost

Оба метода объединяют слабые модели в одну сильную модель. И AdaBoost, и XGBoost в процессе обучения будут увеличивать ансамбль, добавляя в него новые слабые модели на каждой итерации. Разница между методами заключается в том, как расширяется ансамбль.


▪️AdaBoost изначально присваивает одинаковый вес каждому набору данных. Затем он корректирует веса точек выборки после каждого шага. Элементы, которые были классифицированы неверно, приобретают больший вес в следующей итерации.
▪️XGBoost использует градиентный бустинг, который оптимизирует произвольную дифференцируемую функцию потерь. То есть алгоритм строит первое дерево с некоторой ошибкой прогнозирования. Затем добавляются последующие деревья для исправления ошибок предыдущих. XGBoost имеет встроенные механизмы для регуляризации.

Иными словами, разница между алгоритмами в том, что XGBoost не присваивает неправильно классифицированным элементам больший вес.

#машинное_обучение



tg-me.com/ds_interview_lib/184
Create:
Last Update:

Объясните разницу между AdaBoost и XGBoost

Оба метода объединяют слабые модели в одну сильную модель. И AdaBoost, и XGBoost в процессе обучения будут увеличивать ансамбль, добавляя в него новые слабые модели на каждой итерации. Разница между методами заключается в том, как расширяется ансамбль.


▪️AdaBoost изначально присваивает одинаковый вес каждому набору данных. Затем он корректирует веса точек выборки после каждого шага. Элементы, которые были классифицированы неверно, приобретают больший вес в следующей итерации.
▪️XGBoost использует градиентный бустинг, который оптимизирует произвольную дифференцируемую функцию потерь. То есть алгоритм строит первое дерево с некоторой ошибкой прогнозирования. Затем добавляются последующие деревья для исправления ошибок предыдущих. XGBoost имеет встроенные механизмы для регуляризации.

Иными словами, разница между алгоритмами в том, что XGBoost не присваивает неправильно классифицированным элементам больший вес.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/184

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.

Библиотека собеса по Data Science | вопросы с собеседований from cn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA